Anthropogenic pollution elevates the peak height of new particle formation from planetary boundary layer to lower free troposphere
نویسندگان
چکیده
New particle formation (NPF) and subsequent growth are primary sources of atmospheric aerosol particles and cloud condensation nuclei. Previous studies have been conducted in relatively clean environments; investigation of NPF events over highly polluted megacities is still lacking. Here we show, based on a recent yearlong aircraft campaign conducted over Beijing, China, from April 2011 to June 2012, that NPF occurrence peaks in the lower free troposphere (LT), instead of planetary boundary layer (PBL), as most previous studies have found and that the distance of NPF peak to PBL top increases with increasing aerosol loading. Further analysis reveals that increased aerosols suppress NPF in PBL, but enhance NPF in LT due to a complex chain of aerosol-radiation-photochemistry interactions that affect both NPF sources and sinks. These findings shed new light on our understanding of NPF occurrence, NPF vertical distribution, and thus their effects on atmospheric photochemistry, clouds, and climate. Plain Language Summary Comparing with planetary boundary layer (PBL) and upper free troposphere (UT), the lower free troposphere (LT) is thought as weak new particle formation (NPF) region, where particles are thus thought to be either uptransported from PBL or downtransported from UT. Whereas, such distribution seems to be changed under highly aerosol-polluted regions. Our observations collected during a yearlong (April 2011 to June 2012) aircraft field campaign over Beijing, China, show that NPF peak region has been elevated from PBL to LT. Further analysis reveals that increased aerosols suppress NPF in PBL but enhance NPF in LT due to a complex chain of aerosol-radiation-photochemistry interactions that affect both NPF sources and sinks. These findings shed new light on our understanding of NPF occurrence, NPF vertical distribution, and thus their effects on atmospheric photochemistry, clouds, and climate.
منابع مشابه
بررسی تغییرات ارتفاع و ضخامت لایه مرزی در شرایط گردوغباری شهر اهواز
One of the most important components of the extent of pollutants mixing and air quality at near the Earth's surface is the height of boundary layer. Many variables involved in determining the height of the boundary layer of atmosphere. Although all of the troposphere (the lower ~10km of the atmosphere) is affected by surface conditions, most of it has a relatively slow response time. The lower ...
متن کاملImpacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing
Mixing in the planetary boundary layer (PBL) affects vertical distributions of air tracers in the lower troposphere. An accurate representation of PBL mixing is critical for chemical-transport models (CTMs) for applications sensitive to simulations of the vertical profiles of tracers. The full mixing assumption in the widely used global CTM GEOS-Chem has recently been supplemented with a non-lo...
متن کاملOverview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign
In May 2008 the EUCAARI-LONGREX aircraft field campaign was conducted within the EUCAARI intensive observational period. The campaign aimed at studying the distribution and evolution of air mass properties on a continental scale. Airborne aerosol and trace gas measurements were performed aboard the German DLR Falcon 20 and the British FAAM BAe-146 aircraft. This paper outlines the meteorologica...
متن کاملبررسی آلودگی هوای شهر تهران به روش وارونگی بحرانی هافتر
In issues related to air pollution, the thickness of the boundary layer is known as the depth of the mixed layer because the pollution on the ground surface is mixed in this entire layer through turbulence processes. In most cases, the boundary of the area is clearly visible on big industrial cities. The depth of the mixed layer has an important effect in the concentration of air pollution whic...
متن کاملA global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017